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Abstract—Second Law analysis technigques based on the minimization of entropy generation are applied to

the optimal design and operation of a sensible heat thermal energy storage system in which the storage

element is both heated and cooled by flowing streams of gases. The results of this study show that (1) an

entire operational cycle, which consists of a storage process and a removal process, must be considered (as

opposed to the storage process alone) in order to optimize the design and performance of such a system; and

(2) a typical optimum system destroys approximately 70-90% of the entering availability and, therefore, has
an extremely low thermodynamic efficiency.

INTRODUCTION

ECONOMIES in the design and operation of energy
conversion systems often result if some provision is
made for the storage of thermal energy. Such
provisions must be included in an energy conversion
system when the supply of and demand for thermal
energy do not coincide in time. Detailed descriptions
of thermal energy storage devices for residential-,
commercial- and industrial-scale applications appear
elsewhere [1-5] and will not be repeated here.

Independent of the specific application of interest, a
thermal energy storage system may be characterized
by specifying factors such as the physical size of the
system, the storage medium employed, and the range
of temperatures at which the energy is stored. Of
particular importance, however, is the mode of energy
storage; that is, whether the energy is stored as sensible
energy in a solid or a liquid, as the latent heat required
for a phase change of the storage material, or as the
heat of reaction in a reversible chemical reaction [6].
Because of their simplicity and their relative cost,
sensible heat systems have emerged as the most
important class of systems. Therefore, this study is
devoted to an analysis of the optimal design and
operation of sensible heat thermal energy storage
systems.

The classical techniques for the analysis and design
of sensible heat energy storage systems are thoroughly
described in the excellent book by Schmidt and
Willmott [ 7]. Following the traditional methodology
of heat transfer engineers, these techniques are based
completely on First Law considerations. From a First
Law perspective, the efficiency of a thermal energy
storage system can be assessed in terms of how much
thermal energy the system can store. Thus, one system
is considered to be more effective than another if, for
the same energy input in the hot fluid stream entering
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the system and the same amount of storage material, it
is capable of storing more energy. This approach
produces workable designs, but not necessarily those
with the highest possible thermodynamic efficiencies. It
has been shown in recent years that the design of
thermodynamically efficient heat transfer equipment
must be based on the Second Law of thermodynamics
in addition to the First Law. This led Bejan [8] to
define an optimum heat transfer system as the least
irreversible system that the designer can afford and to
develop thermal design techniques based on
minimization of entropy generation.

In a pioneering study, Bejan [9] applied his Second
Law techniques to the analysis of a sensible heat
thermal energy storage system. The power of this
analysis resides in Bejan’s insight that the primary
purpose of a ‘thermal energy storage system’ is not, as
the name implies, to store energy, but rather, to store
useful work, that is, thermodynamic availability.
Thus, his approach is based on minimizing the
destruction of thermodynamic availability {entropy
generation) as opposed to maximizing the total
amount of thermal energy stored. He attempted to
obtain the optimum parameters for the design and
operation of a thermal energy storage system by
examining the energy storage process alone. In
practice, however, these systems are operated in a
cyclic manner, a single cycle consisting of a storage
process followed by a removal process. Thus, the
present study substantially modifies and extends the
Second Law analysis of Bejan to model an entire
storage-removal cycle of a sensible heat energy
storage system. As will be shown, Bejan’s failure to
account correctly for the cyclic nature of the operation
of a thermal energy storage system leads to erroneous
values of the parameters which describe the optimum
design and operation of such a system.
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NS(R),AT
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NOMENCLATURE

cross-sectional area of the heat
exchanger duct

wetted area in the heat exchanger
duct

specific heat of the storage element
constant pressure specific heat of the
gas

constant volume specific heat of the
gas

hydraulic diameter of the heat
exchanger duct

Darcy friction factor

mass velocity, rg/A

dimensionless mass velocity,
G\/RT,/P,

enthalpy per unit mass of gas,
convective heat transfer coefficient
ratio of specific heats of the gas,
Cp/ Cv

mass flowrate of gas in the heat
exchanger duct during the storage
(removal) process

mass of the storage element
entropy generation number, defined in
equation (3)

number of entropy generation units
due to viscous losses in the heat
exchanger during an entire storage—
removal cycle, defined in

equation (10a)

number of entropy generation units
due to heat transfer between the
exiting stream of hot gas and the
surroundings during the storage
process, defined in equation (10b)
number of entropy generation units
due to heat transfer through finite
temperature differences in the heat
exchanger duct during the storage
(removal) process, defined in
equations (10c) and (10d), respectively
number of transfer units, Ug A/t o
Nusselt number, hDy /k, given in
equation (57)

wetted perimeter in the heat
exchanger duct

pressure

Prandtl number of the gas, C,u/k
rate of heat transfer

ideal gas constant

Reynolds number, pDy V/u

entropy per unit mass of gas
entropy

Stanton number, h/pC,V

time

duration of the storage process
duration of a storage-removal cycle
temperature

U

<

Ysr)

overall heat transfer coefficient
between gas and storage element
specific volume of gas

average velocity of gas in heat
exchanger duct

thermodynamic availability (available
work, exergy)

distance along the heat exchanger
duct

heat exchanger parameters, defined in
equations (21) and (58).

Greek symbols

B

[

parameter defined in equation (26)
parameter characterizing the ‘tare
capacity’ of the system, defined in
equation (1)

First Law efficiency, defined in
equation (2)

overall Second Law efficiency, defined
in equation (4)

dimensionless time, mis Cpt/MC
dynamic viscosity of the gas
density of the gas

dimensionless gas inlet temperature
for the storage (removal) process,
(T~ T/ Ty

availability per unit mass of gas.

Subscripts and other symbols

Cvl
Cv2

opt
out

R
S
SE

control volume 1 (in Fig. 1)
control volume 2 (in Fig. 1)

built on hydraulic diameter

exit of heat exchanger duct

final (indicates the end of a storage or
removal process)

gas

generated

inlet of heat exchanger duct

initial (indicates the start of a storage
or removal process)

ambient condition

optimum value found by GRG2
gas outlet condition during storage
process

due to heat transfer between exiting
stream of hot gas and surroundings
during the storage process

removal process

storage process

storage element

TOTAL for an entire storage-removal cycle

AP

AT

due to pressure difference with
surroundings

due to temperature difference with
surroundings

control volume 1 (in Fig. 1)
nondimensional variable.
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ANALYSIS

Description of the system to be analyzed

Consider the sensible heat energy storage system
shown in Fig. 1. The system consists of a large liquid
bath of mass M and specific heat C contained in a well-
insulated vessel. A heat exchanger immersed in the
bath allows heat transfer to occur between the gas
flows passing through the system and the bath itself.
The system operates in a thermodynamic cycle with a
single cycle being composed of a storage process
followed by a removal process.

During the storage process, valves A and B are open
and valves C and D are closed. A constant mass
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flowrate, mg, of hot gas at temperature T;g and pressure
Py enters through valve A, passes through the heat
exchanger, and is discharged to the atmosphere
through valve B. The bath temperature T and the gas
outlet temperature, T,,,, rise continuously throughout
the storage process, both gradually approaching the
hot gas inlet temperature, Tg. As shown in Fig. 2, the
storage process is terminated at time ¢ = t5, when
valves A and B are closed and valves C and D are
opened to initiate the removal process.

During the removal process, a constant mass
flowrate of cold gas, rig, at temperature T and
pressure P enters the system through valve C, passes
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F1G. 1. Schematic of a sensible heat energy storage system.
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F1G. 2. Storage element temperature history for a complete storage process—removal process cycle.
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through the heat exchanger, and exits the system
through valve D. This heated flow is not, of course,
discharged to the surroundings, but is ducted away for
subsequent use in another process. The removal
process continues until a time ¢ =1, when the
storage-removal cycle is completed by the bath
temperature returning to the same value, Ty (= Tig),
that it had at the start of the storage process.

Additional assumptions for the analysis

The analysis of the system described in the
preceding section is also based on the following
assumptions: (a) The bath, which comprises the
storage element, is ‘well-stirred’. Thus, the
temperature is constant throughout the bath at any
instant, but can vary with time; that is, the bath is
treated as a ‘lumped’ component. (b) There is no
vaporization or condensation in the bath. (c) The same
kind of gas flows through the heat exchanger in both
the storage and removal processes. This gas is an ideal
gas with a constant specific heat, C,. (d) The storage
element temperature at the beginning of the storage
process, Tis (= storage element temperature at the end
of the removal process, Tpg) exceeds the inlet
temperature of the heated gas stream, Tz, by an
arbitrary amount (¢Tg); that is

Tis = (1 +&)Tg (= Tr) (1)

where ¢ is a positive constant. The parameter ¢
characterizes the requirement for a thermal energy
storage system to have a certain ‘tare capacity’ in
order to deliver thermal energy to the load. (e) There
are three sources of entropy generation (irreversibility)
in the storage process: (1) heat transfer through the
finite temperature difference, (T, — T), between the gas
in the heat exchanger duct and the storage element; (2)
heat transfer through the finite temperature difference,
(T,.,— Ty), between the discharged gas and the
atmosphere; and (3) fluid friction in the gas flowing
through the heat exchanger. (f) There are two sources
of entropy generation (irreversibility) in the removal
process: (1) heat transfer through the finite
temperature difference, (T, — T), between the gas inthe
heat exchanger duct and the storage element; and (2)
fluid friction in the gas flowing in the heat exchanger
duct. (g) The rates of change of energy and entropy
stored in the gas in the heat exchanger duct during
both the storage and removal processes and of the
energy and entropy stored in control volume 2 during
the storage process are negligibly small compared to
the corresponding rates of change of the energy and
entropy stored in the storage element. (h) The overall
heat transfer coefficients, Us and Uy, are each constant
along the entire gas flow path in the heat exchanger.

One other source of entropy generation, heat
transfer through finite temperature differences within
the storage element, is not included in the analysis.
The inclusion of this effect would yield somewhat
lower thermodynamic efficiencies, however, the

present values are adequate first approximations and
this assumption allows the considerable analytical
simplification afforded by the use of the lumped
storage element.

A figure of merit for the design and operation of the
system

From the classical, First Law point of view the
efficiency of the system should be expressed in terms of
the capability of the system to store energy. This
results in the well-known expression for the ‘First Law
efficiency’ of a thermal energy storage system given by

energy actually stored in the
bath during the storage period
n= -2
maximum possible energy that
could have been stored in the bath
during the same period

Bejan [9], however, has asserted that the commodity
of value is not the energy itself, but the thermodynamic
availability of this energy. Thus, the appropriate figure
of merit based on such Second Law considerations is
the ratio of thermodynamic availabilities given by

Ne= ‘entropy generation number’ for
5= a storage-removal cycle

total availability destroyed
during the cycle

total availability of the cooled
and heated gas streams that
enter the storage unit

When Ng achieves its maximum possible value of
unity, all of the availability entering the system is
destroyed by irreversibilities. As Ng approaches its
lower bound of zero, however, the system approaches
completely reversible operation and no availability is
destroyed. Therefore, the system should be designed
and operated to minimize the value of Ng. (This
minimum entropy generation criterion was shown by
von Spakovsky and Evans [10] to be a special case of
the more general optimization approach of Evans [11]
and Frangopoulos [12].) This parameter may be
placed in a more familiar context by noting that it is
related to the so-called ‘overall Second Law
efficiency’ [13]

availability out in product
(mn)o = TICTTVN
availability in

by the simple expression
Ns=1-(n1)o- (5)

Thus, the method employed in this work may also be
regarded as a maximum Second Law efficiency
technique.

The total availability of the cooled and heated gas
streams that enter the storage unit during a complete
cycle may be written as

WioraL = Wap+ War {6)
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where
Wap = (Wei)ap + (Wridar (7a)
and .
TA7 Fe ¢ 720 y fYA7 N T\
WaT = \Wsi)aT T\WRi)aT- {/0)

Invoking the Gouy-Stodola theorem [14], which
states that the availability destroyed is proportional to
the entropy generated, gives

rtv tal nvmlahlhtv—l

destroyed durmg
an entire cycle

= To(Scen)totar = To[Scens +Scen k]
= [To][(Scens)ar+ (Scen m)ar + (Scen s)o

+(Scens)ar + Sgenplar]. (8)

Substituting equations (7) and (8) in equation (3) and
grouping terms such that the contributions of the
various sources of entropy generation may be

explicitly displayed yields
Ng = Nap+Ng+Nsar+Nrar )]
where
S, + (S,
Nyp= ( GEN,SEAP (_GEN,R)AP (10a)
Wap+ War
S .
Ng = el (10b)
Wap+ War
S,
Nsar = (_GEN,SEAT (10¢)
Wip+ War
S.
Naar = (_GEN,R_)AT . (10d)
Wap+ War

Analysis of the storage process

Applying the Second Law and the law of
conservation of mass to control volume 1 in Fig. 1
gives for the storage process

15
(Sgens)evi = (SFS"SIS)+'i'Sj (Ser —si)de. (11)
0

Rewriting the Maxwell relation T ds = dh—v dP for
an ideal gas, integrating the resulting expression
between the inlet and outlet of control volume 1 and
substituting in equation (11) gives

. s /T
(Scens)cvi = (Sps— Sis) + g CPJ 1n< 7«: ')dl

0 iS

+1itg Reg In[ =2
n[—).
STAP,

In a similar manner, applying the Second Law and
the law of conservation of mass to control volume 2 in
Fig. 1 and making use of the Maxwell relation gives for
the storage process:

: S Tow
(Scensleva = —mstJ ln< T >dt

0 0

(5
o \ To

(12)

(13)

Using the First Law and the law of conservation of
mass to evaluate the last term in equation (13) yields:
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. C J\'S<’I:Jut
+ ritg -
P\ T

Writing the Second Law for the storage element (the
liquid ba h) gives

(SGEN,S)CVZ =

1) dr. (14)

d ) McCdT

ds = Ose =" (15)

dt T T dr
or

s _d (MCInT) (16)

et n

de  dt
where the First Law has been used to evaluate the heat
transfer term in equation (15). Integrating equation
(16) over the storage period we obtain:

T
(Ses—Sig) = MC 1n($). a”
1S

Expressions must now be found for the temperature
ratios (T, /Ts), (Tou/ To) and T/ Tis) which appear in
equations (12), (14) and (17), respectively. An energy
balance on the storage element gives

JT a7 _(rhstt> _o
fis (Ts—Tow)  \ MC

while the energy balance on a differential length of the
heat exchanger duct given by

tns Cp 4T, = — Us(p dx)(T, ~ T)

(18)

(19)

may be integrated over the entire length of the duct
and shown to yield

(Ts— Tow) = ys(Ts—T) (20)

where
ys = (1—e”NTY). 21)
Introducing equation (20) into equation (18),

integrating and substituting equation (1) in this result,
and rewriting in terms of the nondimensional variables
gives the following expression for the time-varying
temperature of the storage element:

+ 1
T = [1+1:R][T0]|: s +<1+s— +ts>e-vse].
TR 1+TR

(22)

By substituting equation (22) in equation (20),
rearranging, and rewriting the results in terms of the
nondimensional variables it can easily be shown that

Tou \ _ (1+e)1+1q
()= o T e @
and
Tour \ _ (L+e)(1+1q
()= tesafron] 1)
(24)
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Finally, after noting that T = Tzg when 8 =6,
equations (1) and (22) may be used to show that

( FS) - (1 ﬁ) @)
Tis 1+¢
where

1+ Ts 1 +TS
=i l4e——2de™s0 4l 21} (26
d K ¢ 1+zR> (1+zR H (26)
The increase of the entropy of the storage element

during the storage process may now be found from
equations (17) and (25) as

1
(Ses— Sis) = MC ln( I:‘f ) (27
Then, equations (12), (23) and (37) give
_ L‘ﬁ)
(Scenslovi = MC ln( Tre.
o
+MCf ln{l—[l—w]
0 (1+15)
<Doslle ]} as
+(MC)( )(95)1 ( ) (28)
0

where the ideal gas relation R/C,, = (k—1)/k has been
used in the last term of equation (28). Since the only
sources of entropy generation in control volume 1
during the storage process are viscous friction in the
heat exchanger duct and heat transfer through the
finite temperature difference, (T, — T), between the gas
in the duct and the storage element, equation (28) may
be rewritten as

Soenslovi = (MCHSgen shar+ (MO Sgenslar (29)

_ k-1 Ps
s = (572 0g) In[ =2
(Scens)ar ( k )( s) U(PO)
and
1
(Seen, Scens)ar = In (j‘g)

+e

bs {(14e)(1 +1g)
*L ‘“H u+“z;r‘}

x[st[e"ys"]}de. G1)

where

(30)

Similarly, since heat transfer through the finite
temperature difference (T,,,—T,) between the
discharged gas and the surroundings is the only source
of entropy generation in control volume 2 during the
storage process, equations (14) and (24) yield

(MC)(Sgen s)g (32)

(Scenslov: =

where

(Scenslo = [Osilts—In(1 +15)] + [ 1+ 1r]{e—f]
_rs ln{l _[1_(1+£)(l+rk):|
0 (1 +Ts)

x[ ys][e"sﬂ]} de. (33)

Analysis of the removal process
In a manner identical to that shown for the storage
process, it is easily shown for the removal process that

= (MC)(Sgenp)ar
+(MC)Sceng)ar G4

{Seen.r} = (Saen r)covt

where

k—1\/n P,
(SgEn R )aP = (T)(ﬂ')(ek - 0s) 111( lR) (35)
mg PeR
e— 1+
{Scenr)ar = ln( i +[:>+(ms>

(6 —0s) o
X J In[1 + Byg e~ ORERIMIE=0S)] (0 — )
0
(36)

and
37)

PR = [1 . e'{UR,»’Us)(thsﬂfo)(NTU)] .

The integral in equation (36) cannot be solved in
closed form. It can, however, be solved numerically in
a straightforward manner. In the derivation of the
above results energy balances on the heat exchanger
duct and control volume 1 gave

T-Tx
- Tr

— e~ BRIARIISHE - B5) (38)

as an intermediate result, which will be used below.

Completion of the analytical model

First, expressions must be found for the
availabilities W, and W,; that appear in equations
(10). For the storage process

maximum useful work that could
be performed by the gas that passes
through the heat exchanger

total mass of availability per unit
= the pas mass of the gas .
g at inlet conditions
(39)
As shown in classical thermodynamics, the availability
of a unit mass of fluid in a steady-state, steady flow
process with negligible kinetic and potential energies is

given by

W = (h—ho)— To(s o) (40)
Thus, equation (39) may be rewritten as:
Wg; = [msts ][ (s —ho)— Tolss—so)]- (41)

Evaluating equation (41) for an ideal gas and rewriting



A Second Law analysis of thermal energy storage systems 49

in terms of the nondimensional variables gives

We = Weidap + (Waidar 42)
where
k—1\. [P
e = o] () (72| o
4+ o
and
Wsidar = [MCT][0s][ws —In(1 +15)].  (44)

Similarly, for the removal process it can be shown that

Wa; = (Wi)ap + (MRidar {45}

o (7))

(46)

where

(Widap = [MCTO]

and

Myt ]
(WRi)AT = [MCTo] s

[BR — 05] [TR -— ln(l + TR)] .
47

Thus, equations (7a), (42) and {46), and equations (7b},
(44) and (47) give

W (ng)AP + (WRx)AP
4T TTMCT)

[ ) Goeom()]

(48)

L1 |

and
Fon = (Wsidar + (Wriar
AT (MCT,)

= {[ts—ln(l +15)](85]

+ [’:Tj [0g — 05 ][ 7g — In(1 +zR)]} (49)
respectively.

Expressions must now be found for the pressure
ratios (Pig/P,) and (Pr/P,) that appear in equations
(30), (35) and (48). For the purposes of the present
analysis, it will be assumed that the discharge pressure
for the removal process is atmospheric. Thus

(7o) (%)

The implication of this assumption is easily seen by
using equations {30), (35), (48) and (50) to show that

(50)

(Scenslart(Scenr)ar _ |
Wap
Physically, this result indicates that all of the
available work due to the inlet pressures of the storage
and removal gas flows being at greater than atmospheric
pressure is completely destroyed by viscous friction.
Next, we make the reasonable assumption that the
overall thermal resistance to heat transfer between the
gas in the heat exchanger and the storage element is

(51

dominated by the resistance between the gas and the
heat exchanger duct wall. Under this assumption the
overall heat transfer coefficient is closely approxi-
mated by the gas-side heat transfer coefficient such

that
(22)-Ge)-Gellis] o
Us hs (St)s
and the parameter yy may be written as
yr=[1 _e—[iSI)Rf(SI)s]NTU]' {53)

It may then be readily shown for the storage process
that

Ps\ _ 5
(2)- o.s+{o.zs +[

while for the removal process

(%:) - 0.5+{0.25+[ (f)JB,‘S‘][l +1¢]

x[%] [G’][NTU]}W. (55)

oo

(54)

To fix ideas, assume that for all of the systems to be
analyzed in the present study the flows in the heat
exchanger duct may be characterized as turbulent
flows in a smooth, round tube such that Reynolds’
analogy

(St)(Pr)? = <§> = (0.023)(Rep,) *2  (56)
applies and the Nusselt number is given by [15]:

Nup, = (%) (0.023)(Re§3NPr'?).  (57)

Introducing equations (56) and (57) into equations
(53), (54) and (55) gives

yr = [1—e ™R NTU)]

(58)

(%5) = 0.5+{0.25+[Pr*P][1+][G*][NTU]}' 2

(59)
and

(}})’J 05+{025+[Pr2,3}[ J 1.8

x[1+ tR][GZ][NTU]}m 60

respectively.
Since the system is operated in a cycle, the
dimensionless total cycle time, 6y, and the

dimensionless storage time, 6, are not independent of
each other. Thus, it is possible to obtain a closed
form analytical expression relating these two
variables. Noting that Tig = Ty, that T = Tpp = Tjg
=(1+e)(1+wx)T,) when 6 =46, substituting



50 R. J. KRANE

equation (25) in equation (38), and rearranging gives:

B 1/[yr(rig ihs)]

Thus, the duration of the entire cycle, g, is uniquely

determined when the duration of the storage process,
fs, is specified.

Finally, the First Law efficiency of the system, which

is defined in equation (2), may be shown to be

given by:

= 1—e %, (62)
Summary of the governing equations

The analytical model is composed of 20 equations
[equations (9), (10a)-(10d), (21), (26), (30)-(32), (35),
(36), (48)-(50), (58)-(62)] in 29 unknowns [N, Nyp,

NQ, NS.AT’ NR,ATs WAPa WATa (SGEN,S)AP’ (SGEN,R)AP’

(Scen,s)at: (ScEN,$)g» (SGENR)AT> Vs YR NTU, B.e.1s,
TR> b, O, k, Pr, (Ps/Pq), (Pir/Per), (Pir/Py), (g /ritg),
G, m]. Thus, there are nine independent variables in
the model.

Description of the optimization study

Numerous design problems can be posed by
selecting different sets of the nine independent
variables. For the problem examined in the present
study, these nine variables were chosen to be g, g, &,
Os, (g /ig), G, NTU, Pr and k. The values of 1, 13, &,
(mg/s), G, Pr and k were specified for each system,
while optimum values of the dimensionless storage
time, (05),, (an operational variable), and the number
of transfer units, (NTU),, (a design variable) were
computed by an optimization code, GRG2. (‘Optimal
values’ are defined here as those values which
minimize the value of the figure of merit, Ng.) This is a
realistic design problem which is the counterpart for a
complete storage-removal cycle of the problem
investigated by Bejan [9] for the storage process
alone. Results were obtained for 33 systems, which

represent ranges of the independent variables which
include most cases of practical interest. Air was
assumed to be the gas used for both the storage and
removal processes for all of these systems.

The optimization code, GRG2 [16], is a
sophisticated set of routines for solving both linear
and nonlinear optimization problems. GRG2 is based
on the generalized reduced gradient algorithm [17],
which is essentially the upper-bound simplex method
of linear programming extended to accommodate a
nonlinear objective function.

PRESENTATION AND INTERPRETATION
OF RESULTS

Results for a typical optimum system

The results for all 33 systems examined in this study
are presented in Tables 1-5. An efficient method of
assimilating this information is to begin by focusing
attention on the results for a ‘typical’ optimum system
and then to proceed to a more general discussion of the
overall results. System No. 15 was selected for this
purpose because it is representative of many medium
temperature thermal energy storage systems of
practical interest. For this system, 75 = 1.0, tg = 0.0,
(hg/ms) =10, G=005 ¢=01, k=14, and
Pr = 0.71 and the GRG2 optimization program gave
(05)opy = 0.8634, (NTU )y, = 5.5533, and (Ngs)yin
= 0.7337.

The dimensionless storage time, 6Og=
(mgCyts/MC), may be interpreted as the ratio of
the thermal capacity of the hot gas used in the storage
process to the thermal capacity of the storage element.
The optimum value of 0g agrees with Bejan’s observa-
tion 8] that this parameter should be of order unity
for a well-designed system. The number of transfer
units (NTU), which is an indicator of heat exchanger
size, is reasonable. The optimum value of the entropy
generation number (Ng), however, shows that the
overall thermodynamic efficiency of this system is

Table 1. Results of optimization study for systems 1-9 (15 = 1.0, g = 0.0, k = 1.4, Pr = 0.71)

System

Variable 1 2 3 4 S 6 7 8 9
mg/ms 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
G 0.005 0.005 0.005 0.05 0.05 0.05 0.5 0.5 0.5
€ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
(6s) opt 1.050 0.9522 0.8313 1.069 0.9660  0.8432 1.469 1.260 1.089
(NTU)op: 10.09 10.80 10.00 5.555 5.687 5.744 2.655  2.796 2.866
Ng 0.7399 0.7309 0.7208 0.7490  0.7393  0.7292 0.8751 0.8615  0.8520
Or 9.410 6.030 4.441 9.459 6.063 4.470 10.52 6.786 5.004
Ps/P, 1.0004 1.00006 1.0003 1.021 1.022 1.022 1.643 1.667 1.679
PRr/P, 1.00005 1.00006 1.00005 1.003 1.003 1.003 1.133 1.140 1.143
(1o 0.2601 0.2690 0.2791 0.2509 0.2606  0.2707 0.1248 0.1384  0.1479
m 0.6501 0.6141 0.5645 0.6544  0.6181 0.5685 0.7448 0.6937  0.6419
Nap 0.5873x 1073 0.5530x1073 0.4858x1073 0.0305 0.0276  0.0264 0.4514 04265 04153
Ng 0.2253 0.2199 0.2153 0.2240 02182  0.2135 0.1839 0.1766  0.1723
Nsat 0.3071 0.2955 0.2813 0.2945  0.2851 0.2720 0.1344  0.1419  0.1402

0.2070 0.2150 0.2237 0.2001 0.2086  0.2173 0.1054 0.1165 0.1243

NraT
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Table 2. Results of optimization study for systems 10-18 (zg = 1.0, ;g = 0.0, k = 1.4, Pr = 0.71)

System
Variable 10 11 12 13 14 15 16 17 18
1R /g 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.005 0.005 0.005 0.05 0.05 0.05 0.5 0.5 0.5
€ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
(0s)opt 1.051 0.9531 0.8331 1.105 0.9909 0.8634 1.795 1.515 1.309
(NTU)opt 9.681 10.28 9.860 5.215 5.447 5.533 2,672 2.814 2.887
Ns 0.7400 0.7310 0.7209 0.7559 0.7445 0.7337 0.9058 0.8894 0.8786
Or 5.231 3.492 2.639 5.333 3.560 2.693 6.520 4.426 3.426
Ps/P, 1.0003 1.0004 1.0003 1.020 1.021 1.021 1.646 1.670 1.682
Pir/P, 1.0001 1.0002 1.0001 1.010 1.010 1.010 1.384 1.399 1.408
(1o 0.2599 0.2689 0.2790 0.2440 0.2554 0.2662 0.0941 0.1105 0.1213
n 0.6504 0.6144 0.5652 0.6669 0.6272 0.5768 0.8119 0.7595 0.7095
Nap 0.0011 0.8873x 1073 0.7606 x 10~ 0.0523 0.0433 0.0396 0.5577 0.5191 0.5000
Ny 0.2253 0.2201 0.2156 0.2277 0.2209 0.2159 0.1766 0.1742 0.1718
Nsar 0.3068 0.2951 0.2810 0.2807 0.2752 0.2640 0.0904 0.1015 0.1032
NRAT 0.2069 0.2149 0.2236 0.1952 0.2050 0.2142 0.0812 0.0947 0.1037
Table 3. Results of optimization study for systems 19-27 (tg = 1.0, tg = 0.0, k = 1.4, Pr = 0.71)
System
Variable 19 20 21 22 23 24 25 26 27
1R /ritg 20 2.0 2.0 20 2.0 2.0 2.0 2.0 2.0
G 0.005 0.005 0.005 0.05 0.05 0.05 0.5 0.5 0.5
€ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
(0s)opt 1.053 0.9543 0.8338 1.200 1.058 0.9198 2.131 1.798 1.564
(NTU)opt 9.267 9.698 9.885 4.678 5.001 5.118 3.055 3.152 3.208
Ng 0.7405 0.7313 0.7212 0.7741 0.7587 0.7463 0.9326 0.9164 0.9056
Or 3.144 2.224 1.737 3.360 2.371 1.858 4.532 3.299 2,671
Pis/P, 1.0003 1.0003 1.0003 1.018 1.019 1.019 1.710 1.726 1.735
Pir/P, 1.0006 1.0006 1.0006 1.031 1.033 1.034 2.038 2.060 2.072
(n1)o 0.2594 0.2686 0.2787 0.2258 0.2412 0.2536 0.0673 0.0835 0.0943
0 0.6512 0.6149 0.5655 0.6954 0.6505 0.5992 0.8688 0.8212 0.7771
Nap 0.0027 0.0020 0.0017 0.1076 0.0861 0.0762 0.6660 0.6201 0.5957
Ng 0.2256 0.2201 0.2156 0.2358 0.2271 0.2216 0.1523 0.1576 0.1591
Ns At 0.3057 0.2945 0.2805 0.2478 0.2502 0.2429 0.0570 0.0678 0.0706
Nr AT 0.2065 0.2147 0.2234

0.1830 0.1954 0.2057 0.0573 0.0710 0.0801

Table 4. Results of optimization study for systems 28-30  Table 5. Results of optimization study for systems 31-33

(1s = 2.0, 7 = 0.0, k = 1.4, Pr = 0.71)

(tg = 2.0, 7 = 0.1, k = 1.4, Pr = 0.71)

System System

Variable 28 29 30 Variable 31 32 33
R /ris 1.0 1.0 1.0 MR /mhs 1.0 1.0 1.0

0.05 0.05 0.05 G 0.05 0.05 0.05
& 0.01 0.05 0.1 £ 0.01 0.05 0.1
(0s) opt 0.9859 0.9268 0.8608  (6s)opt 0.6499 0.6224 0.5681
(NTU)opt 5913 6.121 6.217 (NTU)opt 5.425 5.728 5.864
Ng 0.7141 0.7069 0.6996 Ng 0.6334 0.6325 0.6284
Or 5.831 4.134 3.347 Or 5.086 3.435 2.658
Ps/P, 1.034 1.035 1.036 Pis/P, 1.031 1.033 1.034
Pr/P, 1.012 1.012 1.012 Pir/Py 1.012 1.012 1.013
(1) 0.2859 0.2931 0.3004  (m)o 0.3666 0.3675 0.3716
m 0.6259 0.6034 0.5765 0.4764 0.4623 0.4325
Nap 0.0279 0.0235 0.0218 Nap 0.0327 0.0266 0.0242
Ny 0.2240 0.2195 0.2155 Ng 0.1545 0.1615 0.1634
Ns AT 0.2645 0.2603 0.2531 Ns AT 0.2907 0.2812 0.2714
NRrAT 0.1977 0.2035 0.2093 NRAT 0.1554 0.1632 0.1695
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F1G. 3. Typical entropy generation number surface.

extremely low. Since 1z = 0.0 and the pressure drops
across the system are quite small, almost all (=96 %)
of the total thermodynamic availability of the storage
and removal gas flows is concentrated in the
availability of the storage gas flow due to the fact that
it is at a temperature higher than that of the
surroundings. An entropy generation number of

0.7337 means that 73.37% of this availability is
destroyed during a storage-removal cycle. Thus, only
26.63 %, of this availability is delivered in the exiting
stream of heated gas during the removal process. (The
Second Law efficiency is only 26.63%.)

The entropy generation number surface [Ng=
Ng(0s, NTU)] is shown in Fig. 3. This surface is
representative of the surfaces for all the systems
examined in this study. Visual inspection shows that
there is no local minimum point that could be
mistakenly identified as a global minimum by the
optimization program. A detailed examination of the
data used to plot this surface indicates that the
program has correctly located the global minimum
point of Ng.

The curve formed by the intersection of the entropy
generation number surface with the plane for which
NTU = (NTU),y is shown in Fig. 4. As expected, this
curve indicates that Ng always increases when the
storage time deviates from its optimum value of
0.8634. The relative contributions of all the sources of
irreversibility in the system to the entropy generation
number, Ng, which are also shown in Fig. 4, offer some
insight into this behavior. In the limit of 65— 0, the
largest source of entropy generation is heat transfer
through finite temperature differences in the heat
exchanger duct during the storage process, which is
represented by Njsp. This source, however, rapidly
diminishes in importance with increasing time until, at
the optimum storage time of 0.8634, it contributes
369 of the total entropy generated. In the limit of
0s — oo, this source of irreversibility continues to
decrease in importance and heat transfer between the

)

’(NS

ENTROPY GENERATION NUMBER

SYSTEM NO. 15

DIMENSIONLESS STORAGE TIME ,

( 0g)

FIG. 4. Effect of storage time on entropy generation by each source of irreversibility in the system.
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F1G. 5. Effect of heat exchanger NTU on entropy generation number for an otherwise optimal system.

exiting stream of hot gas and the surroundings during
the storage process, which is portrayed by Ny,
becomes the dominant source of entropy generation.
The entropy generated due to heat transfer in the heat
exchanger duct during the removal process, which is
represented by Ny 47, increases with storage time until
it reaches a maximum value at (f5),, and thereafter
decreases with increasing storage time. Finally, the
viscous effects in the heat exchanger duct, which are
given by N,p, make a small, but not negligible,
contribution to Nj.

The curve formed by the intersection of the entropy
generation number surface with the plane for which
05 = (05)o is given in Fig. 5. This curve clearly
indicates that Ny is a very weak function of NTU over
a wide range of values near the optimum point, which
is of some practical importance, since this shows that
the number of transfer units could be reduced from the
optimum value of 5.5533 to values as low as 3 without
seriously reducing the performance of the system.

As shown in Table 2, the First Law efficiency, #;, of
the optimized system is only 57.68%;,. Thus, when
designed and operated in a thermodynamically
efficient manner, the system stores just over half of the
maximum possible amount of thermal energy. The
influence of the storage time on the First Law
efficiency for an otherwise optimal system is shown in
Fig. 6. As expected, the First Law efficiency increases
monotonically with storage time. It approaches its
limiting value of unity at a dimensionless storage time
of approximately 5. Figure 4, however, shows that
when 65 = 5, that the entropy generation number is
approximately 0.89; that is, that 899% of the

HMT 30:1-D

commodity of real value, the thermodynamic
availability, is destroyed (the Second Law efficiency of
the system is only 11 %). This discrepancy between the
First Law and Second Law performance criteria
clearly illustrates the necessity of employing Second
Law techniques in order to correctly optimize the
thermodynamic efficiency of a thermal energy storage
system.

Now that the results for a typical optimum system
have been presented, the overall parametric trends of
the optimization study will be discussed.

General results of the optimization study

For the ranges of the parameters that were
investigated, the dimensionless mass velocity, G, had
the largest effects of any parameter on system design,
operation and performance. As may be seen in Fig. 7,
values of G that are ‘too large’ (on the order of 0.5)
result in reductions in system performance (increases
in Ng). These reductions are caused by greatly
increased viscous losses in the heat exchanger duct,
which are characterized by the increases in the
pressure ratios (Pg/Pg) and (Pg/P,) with increasing G
as shown in Tables 1-3. This trend would seem to
dictate minimizing G, however, as shown in Fig. 8,
values of G that are ‘too small’ (on the order of 0.005)
result in undesirably large heat exchangers (NTUs).
Inspection of both Figs. 7 and 8 suggests that a
compromise between these two effects is obtained
when G is selected to be approximately 0.05, which is
in agreement with a similar result found by Krane [ 18]
in a study of thermal energy storage systems with
Joulean heaters. Thus, all further discussions will be
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limited to those practically important systems for
which G = 0.05 (systems 4-6, 13-15, 22-24 and
28-33).

Figures 7 and 8 also show that the effects of the
parameter ¢, which characterizes the requirement for
the system to have a certain ‘tare capacity’ in order to
deliver thermal energy to the load, and the parameter

(mg/ms), the ratio of the mass flowrates of gas in the
removal and storage processes, on both system
performance (Ng) and heat exchanger size (NTU) are
relatively small.

Tables 1-5 show that for all systems for which
G =0.05 that 0.5681 (system 33) < (), < 1.200
(system 22) and 0.4678 (system 22) < (NTU),,

Cm— g/ g = 20

mg / mg
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< 6.217 (system 30). Thus, Bejan’s observation [8]
that the dimensionless storage time should be of order
unity for a well-designed system, which he reached by
analyzing the storage process alone, seems to hold
when the analysis is extended to portray the entire
storage-removal cycle. We may also conclude that the
heat exchangers required for these systems are all of a
reasonable size (NTU < 6.217).

As is true for system 15, the thermodynamic
efficiencies of all the other practically important
(G = 0.05) systems examined in this study are extremely
low. For g = 1.0, the entropy generation number, Ng,
varies from 0.7292 for system 6 to 0.7741 for system 3,
while for tg = 2.0, it varies from 0.6284 for system 33
to 0.7141 for system 28. Thus, since the most efficient
optimal system analyzed in the study (system 33)
destroys 62.84 % of the availability, we may readily
conclude that sensible heat thermal energy storage
systems are inherently inefficient devices. Two aspects
of their characteristic inefficiency require further
comment. First, as noted in the analysis, the treatment
of the storage element as a lumped component
prevents the inclusion of an additional source of
irreversibility in the analytical model, namely, entropy
generation by heat transfer through finite temperature
differences within the storage element. Thus, if the
storage element was modeled more realistically as a
distributed component, the resulting entropy
generation numbers would be somewhat higher than
those calculated in the present study. Second, as
shown in Tables 1-5, the entropy generated by heat
transfer between the exiting stream of hot gas and the
surroundings during the storage process constitutes a

major portion of the total entropy generated during
the entire storage-removal cycle. (This contribution,
given by the ratio Ny/Nj, varies from a minimum of
24.4%; of the total for system 31 to a maximum of 31 %
of the total for system 28.) This led Bejan [ 8] to suggest
connecting multiple thermal energy storage systems in
series. In such a configuration, the hot gas exiting one
unit would enter the next unit instead of mixing with
the surroundings. In principle, this would continue
until the gas stream exiting a unit during the storage
process was essentially at atmospheric temperature.
Thus, connecting thermal energy storage systems in
series could virtually eliminate, or, at worst, greatly
reduce, this contribution to the total entropy
generation. The point to be made here, however, is
that when this option is not employed and the hot gas
stream is dumped to the surroundings during the
storage process, this source of entropy generation must
be charged to the storage system.

Comparison of system 15 (zg = 1.0, g = 0.0) and
system 30 (tg = 2.0, 7z = 0.0) shows that increasing
the dimensionless inlet temperature of the hot gas flow
in the storage process can marginally increase the
thermodynamic performance (decrease the entropy
generation number) of a thermal energy storage
system. Such increases in performance, however, are
achieved at the expense of increased heat exchanger
size (here, an increase of approximately 119). The
effect of the dimensionless gas inlet temperature for the
removal process, g, on the design and operation of the
system can be seen by comparing systems 30 and 33.
These systems are identical except that 7z = 0.0 for
system 30 and 0.1 for system 33. As might have been
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expected, Tables 4 and 5 show that increasing 1y from
0.0 to 0.1 decreases the entropy generation number,
Ny, from 0.6996 to 0.6284 and reduces the required
heat exchanger size (NTU) from 6.217 to 5.864. These
results can be used to establish an important
requirement for the analysis of thermal energy storage
systems, namely, that the entire storage—removal cycle,
not just the storage process alone, must be analyzed in
order to optimize the design and operation of such a
system. This follows immediately from the results for
systems 30 and 33. All of the parameters which
describe the storage processes for these two systems
are identical. The systems differ only in a parameter,
tr, that pertains to the removal process. Thus, an
optimization scheme which is based solely on an
analysis of the storage process would incorrectly
predict that the dimensionless storage time, fg, the
heat exchanger NTU, and the entropy generation
number, N, should be the same for both systems.

CONCLUSIONS

The present analysis and that of Bejan [9] show that
the Second Law of thermodynamics must be used to
design thermal energy storage systems with the highest
possible thermodynamic efficiencies. Thus, from the
viewpoint of Second Law analysis we may conclude
that: (1) the real purpose of a thermal energy storage
system is not to store energy, but to store
thermodynamic availability (exergy); (2) both design
and operational parameters must be considered when
optimizing the thermodynamic performance of a
thermal energy storage system; (3) sensible heat
energy storage systems are inherently inefficient
devices; and (4) an entire storage-removal cycle as
opposed to the storage process alone, must be
analyzed in order to optimize system performance.

In closing, we should note that the optimum
performance of a thermal energy storage system must
ultimately be defined in economic terms. The reader,
however, should recall Bejan’s definition of an optimal
thermal system as ‘the least irreversible system that the
designer can afford’ and realize that the present
analysis provides the engineering tools to design such
systems.

Acknowledgement—This work was supported by the
Department of Mechanical and Aerospace Engineering of the
University of Tennessee through the award of an Endowed
Summer Research Grant to the author.

17.

R. J. KRANE

REFERENCES

. D. R. Glenn, Technical and economic feasibility of
thermal energy storage, C00-2558-1, NTIS, Springfield,
VA (February 1976).

. Committee on Advanced Storage Systems, Criteria for
energy storage R & D, National Academy of Science,
Washington, DC (1976).

. F. P. Bundy, C. S. Herrick and P. G. Kosky, The status
of thermal energy storage, 76CRD041, General Electric
Corp., Schenectady, NY (April 1976).

. G. Beckman and P. V. Gilli, Thermal Energy Storage,
Chap. 3. Springer-Verlag, New York (1984).

. J. Jensen and B. Sorensen, Fundamentals of Energy
Storage, Chap. 1. John Wiley, New York (1984).

. D. C. Golibersuch et al., Thermal energy storage for
utility applications, 7SCRD256, General Electric Corp.,
Schenectady, NY (December 1975).

. F. W. Schmidt and A. J. Willmott, Thermal Energy
Storage and Regeneration, Chaps 2—4. Hemisphere,
Washington, DC (1981).

. A. Bejan, Entropy Generation Through Heat and Fluid
Flow. John Wiley, New York (1982).

. A. Bejan, Two thermodynamic optima in the design of
sensible heat units for energy storage, J. Heat Transfer
100, 708-712 (1978).

. M. R. von Spakovsky and R. B. Evans, Detailed second
law design of components in complex thermal systems.
In Second Law Aspects of Thermal Design (Edited by A.
Bejan and R. L. Reid), ASME HTD-Vol. 33, pp. 27-37.
ASME, New York (1984).

. R.B. Evans et al., Essergetic analysis for process design

and synthesis. In Efficiency and Costing (Edited by R. A.

Gaggioli), pp. 239-262. American Chemical Society,

Washington, DC (1983).

C. A. Frangopoulos, Thermoeconomic functional

analysis: a method for optimal design or improvement of

thermal systems. Ph.D. thesis, Georgia Institute of

Technology, Atlanta, GA (1983).

. M. J. Moran, Availability Analysis: a Guide to Efficient
Energy Use, p. 86. Prentice-Hall, Englewood Cliffs, NJ
(1981).

. A. Bejan, Second law analysis in heat transfer and
thermal design. In Advances in Heat Transfer, Vol. 15,
pp. 1-58. Academic Press, New York (1982).

. J. H. Lienhard, A Heat Transfer Textbook, p. 321.
Prentice-Hall, Englewood Cliffs, NJ (1981).

. L.S. Lasdon, A. D. Waren and M. W. Ratner, GRG2

user’s guide, CIS-T8-01, Computer and Information

Science Department, Cleveland State University,

Cleveland, OH (March 1978).

L. S. Lasdon and A. D. Waren, Generalized reduced

gradient software for linearly and nonlinearly

constrained problems, WP77-85, Bureau of Business

Research, University of Texas at Austin, Austin, TX

(October 1977).

. R.J. Krane, A second law analysis of a thermal energy
storage system with joulean heating of the storage
element, ASME Paper 85-WA/HT-19, 1985 Winter
Annual Meeting of the American Society of Mechanical
Engineers, Miami, FL (November 1985).

ANALYSE SELON LA SECONDE LOI, DE L'OPTIMISATION DES SYSTEMES
DE STOCKAGE D’ENERGIE THERMIQUE

Résumé—Des techniques d’analyse, selon la seconde loi, basées sur la minimisation de I’entropie créée,

sont appliquées a 'optimisation du dimensionnement et de I’operation d’un systéme de stockage de chaleur

sensible dans lequel I’é1ément accumulateur est a la fois chauffé et refroidi par des écoulements de gaz. Les

résultats de cette etude montrent: (1) un cycle opératoire complet, accumulation et décharge, peut étre

considéré (en opposition avec I'accumulation seule) pour optimiser le fonctionnement et le dimen-

sionnement du systéme ; et (2) un systéme typique optimal détruit approximativement 70-90% de ce qui
entre et, par suite, il y a un rendement thermodynamique extrémement faible.
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EXERGETISCHE ANALYSE VON WARMESPEICHERSYSTEMEN

Zusammenfassung—Auslegung und Betriebsweise eines Warmespeichers fiir fithlbare Wirme, der durch

einen Gasstrom beheizt und gekiihlt wird, werden im Hinblick auf den zweiten Hauptsatz optimiert, wobei

die Minimierung der Entropieerzeugung als Kriterium dient. Die Ergebnisse der Untersuchung zeigen, daB3

ein volistindiger Betriebszyklus, bestehend aus Beladung und Entladung, betrachtet werden muB3 (und

nicht allein der Beladevorgang), um Auslegung und Betriebsweise eines solchen Systems zu optimieren. Sie

zeigen weiter, daB ein typisches optimales System etwa 70-90% der einstrémenden Exergie vernichtet und
damit einen sehr geringen thermodynamischen Wirkungsgrad besitzt.

NMPUMEHEHHUE BTOPOI'O 3AKOHA TEPMOAWMHAMMUKHU JJ151 AHAJIU3A
OINTUMAJBHOW KOHCTPYKLUUU U PEXUMA PABOTHI CUCTEM
AKKYMVIIUPOBAHUS TETUIOBO¥M SHEPTUU

AsoTaims—MeTonuKka ONTHMH3ALMHE Ha OCHOBE BTOPOro Havaja, 6asHpyromascs Ha MHHHMH3ALHA
NPOU3BOACTBA IHTPOIMH, HCIIOIb3YeTCA IJI AaHAJIW3a KOHCTPYKIHA H PEeXXUMOB paGoTHI CHCTEMBI aKKY-
MYJMPOBAaHHMs TEIUIOBOH 3HEPrUM, B KOTOPOH aXKyMyJHMpPYIOLIM 3/71€MEHT KaK HarpeBaercd, Tak
OXJIaXIAEeTCs MOTOKAMH ra3oB. B peaysbTaTe Hccneq0BaHus YCTAHOBJIEHO: (1) AT ONTAMM3ALMH KOHCT-
PYKIHH B PeXHMOB paboThl CHCTEMBbI HEOGXOIMMO PaccMATPHBATh MOJIHBIH pabounit muK, cocToAmMA
KaK M3 mpolecca akKyMyJISIMH, TaK H OTBOZA TelJa, a He TOJIBKO Mpolecc aKKyMYJIHpOBaHu4, (2) B
TUOMYHONM ONTHMHM3UPOBAHHOI cHCTeMe TepsaeTcs okoso 70-90% moABOAMMON 3HEPTHH, H ClieIOBaTe-
JILHO OHA MMEET Ype3BhIYailHO HU3KHI TepMOIHHAMMUYECKHH KO3 (HIMEHT NOJIE3HOTO AeHCTBHA.
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